Name:	Section:
	19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

1 Functions

- 1. Definitions and Interpretations
 - (a) Definition of function, and the vertical line test,
 - (b) Domain and range of a function
 - (c) Increasing and decreasing functions.
- 2. Common functions
 - (a) Types: lines, polynomials, square roots, rational functions, exponentials, and logarithms.
 - (b) Know graphs, domains, and ranges.
 - (c) Know the point-slope and slope-intercept formulas for a line.
 - (d) The laws of exponentials and logarithms: know them and be able to use them!
- 3. Combining functions
 - (a) Types of combination: adding, subtracting, multiplying, dividing, and composing.
 - (b) Be able to simplify, and to find the domain for each
- 4. Inverse functions
 - (a) Defining 1:1 functions, and the horizontal line test
 - (b) The definition of the inverse
 - (c) Evaluating the inverse of a function given point-by point
 - (d) Finding the equation for some inverses.
 - (e) Finding the graph of an inverse

2 Limits

- 1. The tangent line (through 1 point) is the limit of the nearby secant lines (through 2 points).
- 2. Defining Limits
 - (a) $\lim_{x\to a} f(x) = L$ means "we can force f(x) close to L by making x close enough to a".
 - (b) Left and right hand limits.
 - (c) The precise definition: you can decide on a distance (written as δ) such that if x is this close to a, then f(x) is within the given acceptable **e**rror (written as ϵ) of L.
- 3. Continuity

- (a) "f is continuous at a" means $\lim_{x\to a} f(x) = f(a)$.
- (b) Possible reasons f could be **discontinuous** at a.
- (c) Where are the common functions continuous?
- (d) Compositions and continuous functions: If g is continuous at a and f is continuous at g(a), then $\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x))$.
- (e) Determining where a graph is and is not continuous.

4. Computing Limits

- (a) Reading limits from the graph of a function.
- (b) Limit Laws what you can and can't do.
- (c) Plugging in a ONLY when the function is continuous at a.
- (d) Rewriting If you can't just plug in a, you can often rewrite the equation until you can.
- (e) Infinite Limits Think to yourself: as x gets close to a (from the appropriate direction), where does f(x) go? Break this into steps!
- (f) Limits at Infinity When x gets big, where does f(x) go? (You may need to factor the fastest terms off the top and bottom of a fraction, or you may need to think very carefully).

3 Derivatives

- 1. What is a derivative?
 - (a) The slope of the tangent to the graph at a point.
 (Be able to use the derivative to find the equation of a tangent line.)
 - (b) The limit of the slope of the nearby secant lines.

 (Be able to use the limit definition of the derivative to compute simple derivatives.)
- 2. The derivative is also its own function.
 - (a) Sketching the graph of f' from the graph of f.
 - (b) Be able to find/recognize the points where the derivative is **not** defined. Use this to write down the domain of the derivative (a.k.a. the points where f is differentiable)
 - (c) Be able to compute higher derivatives.
- 3. Rules for finding derivatives quickly.
 - (a) Take polynomial derivatives (rules for sums, constant powers, and constant coefficients),
 - (b) Know and use the formula for $\frac{d}{dx}e^x$,
 - (c) Know and use all 6 trigonometric derivatives,

- (d) Know and use the product and quotient rules.
- (e) Use these rules to find the tangent line to a curve.
- (f) Be comfortable with the problems on homework #12-14

Working with graphs

We've used graphs of function in a variety of ways. It can be tricky to keep these straight, so they are listed here by topic for easier comparison.

- 1. **Functions:** The vertical line test, and reading the graph of a function.
- 2. **Functions:** The horizontal line test, and finding the graph of the inverse of a function.
- 3. Limits: Using a function's graph to compute the limit at a point.
- 4. Limits: Using a function's graph to find where the function is continuous.
- 5. Limits: Using limits to find horizontal and vertical asymptotes.
- 6. **Limits:** Suppose it is clear from the graph that $\lim_{x\to a} f(x) = L$. If you are given an acceptable error ϵ , be able to find a distance δ from a such that $0 < |x a| < \delta \Rightarrow |f(x) L| < \epsilon$.
- 7. **Derivatives:** Using a function's graph to sketch the graph of its derivative.
- 8. **Derivatives:** Using a function's graph to find where it is differentiable.

Showing Required Work

You must always show the main steps used in solving a problem. If you skip a step that I couldn't do in my head, I will assume you are copying somebody else's answer.

However, certain problems are *about* the method used to solve them. In these cases, you must show all the steps discussed in class to earn full credit.

- 1. Laws of Logarithms
- 2. Limits at infinity
- 3. Using the precise definition of the limit (either graphically or algebraically)
- 4. Infinite limits
- 5. Use the limit definition of the derivative to compute the slope at a point